初中數(shù)學(xué)幾何研究方法范文

時(shí)間:2024-01-05 17:44:33

導(dǎo)語:如何才能寫好一篇初中數(shù)學(xué)幾何研究方法,這就需要搜集整理更多的資料和文獻(xiàn),歡迎閱讀由公務(wù)員之家整理的十篇范文,供你借鑒。

初中數(shù)學(xué)幾何研究方法

篇1

第一步:

希望工作坊的成員們以年級為單位,完成以下幾個(gè)問卷調(diào)查和訪談。

1、使用《關(guān)于初中幾何問題教學(xué)現(xiàn)狀的調(diào)查問卷》、《關(guān)于初中生對幾何學(xué)習(xí)興趣的調(diào)查問卷》,了解學(xué)生對幾何概念課的感受。

2、通過訪談了解教師對“問題鏈”在初中幾何教學(xué)中的使用現(xiàn)狀的認(rèn)識。

第二步:

從幾何概念課的教學(xué)實(shí)際出發(fā),本研究將“問題鏈”分為以下幾種類型:

1、概念引入“問題鏈”,是教師為引入課題所創(chuàng)設(shè)的情境,是為了使知識間平滑轉(zhuǎn)接,為后續(xù)教學(xué)埋下伏筆,使學(xué)生產(chǎn)生強(qiáng)烈的求知欲等目的而精心設(shè)置的一系列問題。

2、概念形成“問題鏈”,是教師為幫助學(xué)生體驗(yàn)發(fā)現(xiàn)新知識的本質(zhì)屬性或規(guī)律的過程,基于已有經(jīng)驗(yàn)得到新經(jīng)驗(yàn)等目的而精心設(shè)置的一系列問題。

3、概念鞏固“問題鏈”,是教師為幫助學(xué)生鞏固新學(xué)的概念,避免與其他概念發(fā)生混淆,開擴(kuò)學(xué)生思維的廣度,加深理解概念等目的而精心設(shè)置的一系列問題。

本研究將“問題鏈”的設(shè)計(jì)方式分為以下幾種類型:

1、階梯遞進(jìn)式“問題鏈”,要求教師把教學(xué)內(nèi)容設(shè)計(jì)成不同梯度、不同層次的問題組,讓學(xué)生通過一個(gè)個(gè)問題的解決將難題迎刃而解。所提問題難度由淺入深、由簡單到復(fù)雜、由點(diǎn)到面,每一個(gè)問題的提出都有明確的目的,是后一個(gè)問題的鋪墊,是學(xué)生解決下一個(gè)問題的階梯。

2、類比遷移式“問題鏈”,是根據(jù)兩個(gè)對象之間在某些方面的相同或相似,從而推出它們在其它方面也可能相同或相似。

3、變式探究式“問題鏈”,注重以知識變式為抓手,讓學(xué)生在轉(zhuǎn)化中進(jìn)入“最近發(fā)展區(qū)”,提高思維能力,提升思維層次。

4、總結(jié)歸納式“問題鏈”,總結(jié)鏈?zhǔn)墙處熢谶M(jìn)行課堂教學(xué)、單元小結(jié)或復(fù)習(xí)時(shí),為喚起學(xué)生的知識回憶,幫助學(xué)生建立系統(tǒng)知識結(jié)構(gòu)網(wǎng)絡(luò)而設(shè)計(jì)的“問題鏈”。

希望工作坊的成員們以年級為單位,按照下表梳理出的概念課的范圍,從概念引入、形成、鞏固三種類型問題鏈中選擇一到兩種,完成相應(yīng)的教學(xué)案例寫作。

年級

內(nèi)容

人員安排

六年級上

圓周、圓弧、扇形等概念

李亞瓊

六年級下

線段相等、角相等、線段的中點(diǎn)、角的平分線、余角、補(bǔ)角的概念

七年級上

圖形平移、旋轉(zhuǎn)、翻折的有關(guān)概念

軸對稱、中心對稱的有關(guān)概念

周曉旭、金少珍

七年級下

平面直角坐標(biāo)系的有關(guān)概念

相交直線的有關(guān)概念

同位角、內(nèi)錯(cuò)角、同旁內(nèi)角的概念

三角形的有關(guān)概念

全等形、全等三角形的有關(guān)概念

八年級上

命題、定理、證明、逆命題、逆定理的有關(guān)概念

沈安晴、程小婷

八年級下

多邊形及其有關(guān)概念

平行四邊形(包括矩形、菱形、正方形)的概念

梯形的有關(guān)概念

向量的有關(guān)概念

九年級上

相似形的概念

比例線段相關(guān)概念、黃金分割、三角形的重心

相似三角形的概念

銳角三角比(銳角的正弦、余弦、正切、余切)的概念

金偉杰、于曉玲

九年級下

圓有關(guān)的概念

圓心角、弦、弦心距的有關(guān)概念

點(diǎn)與圓、直線與圓、圓與圓的位置關(guān)系中的相關(guān)概念

正多邊形的有關(guān)概念

注:上表是通過閱讀上海教育出版社《九年義務(wù)教育課本數(shù)學(xué)》六—九年級課本,根據(jù)《2020年上海市初中數(shù)學(xué)課程終結(jié)性評價(jià)指南》里規(guī)定的圖形與幾何部分,梳理出初中階段幾何概念課的教學(xué)內(nèi)容。

第三步:

從完成的教學(xué)案例中選一到兩個(gè)比較優(yōu)秀的案例,開展實(shí)驗(yàn)研究。

前測:在授課前,學(xué)生在自行預(yù)習(xí)的基礎(chǔ)上完成一份有關(guān)本節(jié)課概念的試題,記錄其中概念題目的成績。在授課后,學(xué)生再次完成上一張?jiān)囶},記錄其中概念題目的成績。將兩次成績的差值作為本實(shí)驗(yàn)的前測。

后測:在授課前,學(xué)生在自行預(yù)習(xí)的基礎(chǔ)上完成前測使用的試題,記錄其中概念題目的成績。第一次授課后,將問題鏈進(jìn)行改進(jìn),進(jìn)行再一次授課。在授課后,學(xué)生再次完成上一張?jiān)囶},記錄其中概念題目的成績。將兩次成績的差值作為本實(shí)驗(yàn)的后測。

將前測和后測的試卷結(jié)果進(jìn)行對照。

篇2

【關(guān)鍵詞】數(shù)形結(jié)合;初中數(shù)學(xué);應(yīng)用研究

一、引言

在數(shù)學(xué)教學(xué)過程中,教師采用一些幾何圖形的性質(zhì)將某些數(shù)量之間的關(guān)系和概念的抽象化定義直觀地展示出現(xiàn),幫助學(xué)生更加直觀、簡單地了解相關(guān)的數(shù)學(xué)知識,掌握答題技巧,這就是本研究當(dāng)中所提到的數(shù)形結(jié)合教學(xué)方法。數(shù)形結(jié)合不僅可以借助圖形來表達(dá)某種數(shù)量之間的聯(lián)系,也能夠?qū)⑾嚓P(guān)的圖形問題轉(zhuǎn)化為數(shù)量關(guān)系,以便于能夠獲得更為精確的結(jié)論。在初中數(shù)學(xué)課堂上,采用數(shù)形結(jié)合的教學(xué)方法能夠有效地將復(fù)雜的問題變得簡單和明朗。與此同時(shí),也能夠幫助學(xué)生有效拓展解題思路,對研究和掌握數(shù)學(xué)知識是一種有效的教學(xué)方法。

二、初中數(shù)學(xué)教學(xué)中應(yīng)用數(shù)形結(jié)合方法的意義

簡單來說,數(shù)形結(jié)合就是將抽象化的數(shù)學(xué)語言和直觀的圖形結(jié)合起來,也就是代數(shù)問題和幾何問題之間的相互轉(zhuǎn)換。在初中數(shù)學(xué)教學(xué)過程中,數(shù)形結(jié)合教學(xué)方法是一種有效的教學(xué)方法,這種教學(xué)方法能夠精確地刻畫代數(shù)的定義,直觀地表達(dá)幾何問題。這樣就能夠使某些比較抽象化的數(shù)學(xué)知識直觀地呈現(xiàn)在學(xué)生的腦海里。對于初中學(xué)生來說,在數(shù)學(xué)教學(xué)過程中采用數(shù)形結(jié)合的教學(xué)方法能夠使學(xué)生更加順利地掌握相關(guān)的數(shù)學(xué)知識,還能夠幫助學(xué)生練就出觀察問題、分析問題的能力,培養(yǎng)學(xué)生的創(chuàng)新思維能力,符合新課標(biāo)的相關(guān)要求。

對于初中數(shù)學(xué)教學(xué)來說,采用數(shù)形結(jié)合的教學(xué)方法主要可以分為四步。①建立起以方程和不等式為主的函數(shù)代數(shù)模型;②構(gòu)建函數(shù)圖像或幾何圖形來解決相關(guān)的函數(shù)和方程問題;③構(gòu)建幾何圖形或函數(shù)圖像來解析相關(guān)的幾何和函數(shù)綜合性問題;④以圖像的方式將某些信息的應(yīng)用性問題呈現(xiàn)出來。在初中數(shù)學(xué)教學(xué)的過程中,需要將數(shù)形結(jié)合的思想貫穿于數(shù)學(xué)教學(xué)的整個(gè)階段,培養(yǎng)學(xué)生數(shù)形結(jié)合的思維方式,將數(shù)量和圖形更好地結(jié)合起來,再加合理的轉(zhuǎn)換,就能有效解決某些頭疼的問題。數(shù)形結(jié)合的教學(xué)方式可以使學(xué)生在學(xué)習(xí)數(shù)學(xué)的過程中更好地養(yǎng)成、觀察、分析、類比、綜合、概括和抽象的思維方式,這樣不但能夠更好地解決在學(xué)習(xí)上遇到的某些疑難問題,也能夠?qū)⑦@種方法運(yùn)用到生活中。

三、數(shù)形結(jié)合方法在初中數(shù)學(xué)教學(xué)中的應(yīng)用研究

1.數(shù)形結(jié)合方法在初中數(shù)學(xué)教學(xué)中的應(yīng)用――“以數(shù)助形”

“以數(shù)助形”,“數(shù)”便是“代數(shù)”,而“形”則是“圖形”。而這兩方面的內(nèi)容也是初中數(shù)學(xué)所主要研究的內(nèi)容。具體來說,這兩方面的內(nèi)容是相互聯(lián)系的,“數(shù)”與“形”本身就是初中數(shù)學(xué)知識的重要組成部分,采用數(shù)形結(jié)合的方法教學(xué),不僅能夠使學(xué)生更好地掌握這兩方面的內(nèi)容,而且這也是數(shù)學(xué)知識有機(jī)結(jié)合的必然要求。所以,要想更好地理解數(shù)形結(jié)合中代數(shù)和圖形的關(guān)系,那么就需要對其進(jìn)行認(rèn)真的分析和研究。在初中數(shù)學(xué)教學(xué)過程中,如果想要更好地實(shí)現(xiàn)數(shù)形結(jié)合,那么就需要將代數(shù)和圖形之間的常見結(jié)合點(diǎn)作為研究的出發(fā)點(diǎn)。從“以數(shù)助形”來分析,兩者之間的結(jié)合點(diǎn)主要體現(xiàn)在兩個(gè)方面。①將相關(guān)圖形的面積、角度和距離作為幾何量,以此來解決相關(guān)的幾何問題;②采用坐標(biāo)系和數(shù)軸將某些幾何問題轉(zhuǎn)化為代數(shù)問題,再進(jìn)行解決。

舉個(gè)實(shí)例,ABC當(dāng)中,∠A、∠B、∠C對應(yīng)的變分別是a、b、c。那么:①在該三角形內(nèi),如果∠A=2∠B,且∠A=60°,證明:a2=b(b+c);②假設(shè)三角形的一個(gè)內(nèi)角是另一個(gè)內(nèi)角的2倍,那么我們就稱三角形為“倍角三角形”。所以,在第一問里,該三角形是一個(gè)特殊的倍角三角形,但是是否對于任何倍角三角形(∠A=2∠B),關(guān)系式a2=b(b+c)都能成立,試著證明你的結(jié)論。這是一個(gè)典型的以數(shù)助形的試題,主要運(yùn)用了采用相關(guān)圖形的角度來解決集合問題的。所以我們可以做出這樣的分析。在該ABC當(dāng)中,因?yàn)椤螦=2∠B,且∠A=60°,所以根據(jù)三角形內(nèi)角和定義,可以得出三角形為直角三角形(Rt),∠C=90°。

證明:

①:RtABC中,a=c,b=c.

a2=(c)2=c2,b(b+c)=c(c+c)=c2,

a2=b(b+c)。

②:任意倍角三角形,∠A=2∠B,a2=b(b+c)的關(guān)系依然成立。

如圖1所示。延長BA到D,則AD=AC=b,連接CD,則∠CAB=2∠D,∠B=∠D,BC=CD=a。

得出ADC∽CDB,因而=,=。a2=b(b+c)。

所以,通過這個(gè)例子可以得出,在初中數(shù)學(xué)當(dāng)中,利用三角形內(nèi)角和定義可以分析角角關(guān)系,利用三角函數(shù)能夠證明幾何定理。

2.數(shù)形結(jié)合方法在初中數(shù)學(xué)教學(xué)中的應(yīng)用――“以形助數(shù)”

數(shù)學(xué)中,集合圖形的最大特點(diǎn)就是直觀易懂,所以在采用數(shù)形結(jié)合的方法進(jìn)行教學(xué)的時(shí)候,很多數(shù)學(xué)老師和學(xué)生都喜歡采用“以形助數(shù)”的方式來解決一些現(xiàn)實(shí)當(dāng)中所遇到的問題。比如說用幾何圖形來解決代數(shù)的問題,往往都會(huì)產(chǎn)生意想不到的效果。將幾何圖形運(yùn)用到代數(shù)方面,實(shí)現(xiàn)“以形助數(shù)”,主要也可以從兩個(gè)方面來進(jìn)行分析。①利用幾何圖形來記憶相關(guān)的代數(shù)公式。舉個(gè)例子來說,對于完全平方公式可以采用正方形的分割圖來輔助進(jìn)行記憶。通過兩個(gè)完全相同的梯形拼成一個(gè)平行四邊形,就能夠用來輔助記憶梯形的面積公式;②可以利用坐標(biāo)系或數(shù)軸可以賦予一些代數(shù)表達(dá)式的幾何意義,對幾何圖形加以構(gòu)造,就能夠直觀地解決代數(shù)問題,進(jìn)而將代數(shù)運(yùn)算加以簡化。舉個(gè)例子來說,絕對值的幾何定義就能夠用數(shù)軸上兩點(diǎn)之間的距離來加以表示。再比如說,在函數(shù)圖像上,函數(shù)圖像和y軸的焦點(diǎn)就是函數(shù)解析式中常數(shù)項(xiàng)的幾何意義。

例如,已知x為正數(shù),求y=+的最小值。分析可以得出,將+進(jìn)行整理,可以得出:+,所以在坐標(biāo)當(dāng)中有一個(gè)動(dòng)點(diǎn)(x,0),到兩點(diǎn)(0,2)和(2,1)的距離之和,于是本問題轉(zhuǎn)化為求最短距離問題。所以解答的時(shí)候,就是這樣的:

y=+,

使P(x,0)、A(0,2)、B(2,1),所以y=PA+PB。做點(diǎn)B關(guān)于x軸的對稱點(diǎn)B’,坐標(biāo)為(2,-1)。所以y的最小值為AB’==。如圖2。

四、結(jié)語

本研究主要就初中數(shù)學(xué)教學(xué)當(dāng)中的數(shù)形結(jié)合教學(xué)方法的相關(guān)應(yīng)用做出分析研究。在新課程改革不斷發(fā)展的前提下,初中的數(shù)學(xué)教學(xué)模式也在不斷地發(fā)生著變化。數(shù)形結(jié)合的方式無論是對于教師授課還是對于學(xué)生學(xué)習(xí)而言,都具有非常重要的意義。所以,合理利用數(shù)形結(jié)合的教學(xué)模式,“以形助數(shù)”、“以數(shù)助形”,這樣才能夠在根本上提高初中數(shù)學(xué)的教學(xué)效率。

參考文獻(xiàn):

[1]周建明.在初中數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生的創(chuàng)新意識和能力[J].劍南文學(xué)(經(jīng)典教苑),2011,31(08):98-99

篇3

關(guān)鍵詞:數(shù)形結(jié)合;初中數(shù)學(xué);形象直觀

一、 數(shù)形結(jié)合的概念

數(shù)形結(jié)合揭示的是數(shù)學(xué)中已知條件和未知條件之間的一種相互關(guān)系,通過幾何圖像來表示數(shù)量關(guān)系,從而顯示幾何意義。數(shù)形結(jié)合思想在初中數(shù)學(xué)中的應(yīng)用主要表現(xiàn)在以下四個(gè)環(huán)節(jié):第一,選擇代數(shù)模型,可以是方程、函數(shù)、不等式等;第二,根據(jù)代數(shù)模型建立相應(yīng)的幾何模型,可以是數(shù)軸、函數(shù)圖像、幾何圖像等;第三,利用幾何模型,解決代數(shù)和幾何的綜合問題,例如函數(shù)、圓的面積、三角形的判定以及初步的統(tǒng)計(jì)等;第四,是通過圖像表示相應(yīng)的應(yīng)用信息,以促進(jìn)應(yīng)用題的理解和應(yīng)用題問題的解決。

二、 在初中數(shù)學(xué)教學(xué)中引進(jìn)數(shù)形結(jié)合思想的必要性

初中生的思維發(fā)展處于具體形象思維向抽象邏輯思維過渡的階段,初中數(shù)學(xué)在教學(xué)內(nèi)容上已經(jīng)突破實(shí)物運(yùn)算的限制來時(shí)向抽象化的圖形和數(shù)據(jù)邏輯分析轉(zhuǎn)化。初中生思維發(fā)展特征與初中數(shù)學(xué)課程抽象理解要求的矛盾,需要直觀圖像的作為橋梁,促進(jìn)學(xué)生對于數(shù)學(xué)信息、數(shù)學(xué)思想和數(shù)學(xué)解題方法的理解。同時(shí),數(shù)形幾何思想也是數(shù)學(xué)教學(xué)中需要培養(yǎng)的重要數(shù)學(xué)思想,這種思想促進(jìn)數(shù)學(xué)知識的形象化表示,對數(shù)學(xué)知識的簡化教學(xué)起著重要的作用,是初中生數(shù)學(xué)學(xué)習(xí)的目標(biāo)之一。

三、 在初中數(shù)學(xué)教學(xué)中運(yùn)用數(shù)形結(jié)合思想的有效策略

(一)、在數(shù)學(xué)教學(xué)中滲透數(shù)形結(jié)合的思想,引導(dǎo)學(xué)生產(chǎn)生運(yùn)用數(shù)形結(jié)合解決數(shù)學(xué)問題的意識

在初中數(shù)學(xué)教學(xué)中運(yùn)用數(shù)形結(jié)合的思想解決數(shù)學(xué)問題是初中數(shù)學(xué)問題解決的有效方法之一,這種方法滲透在初中數(shù)學(xué)學(xué)習(xí)的不同內(nèi)容之中,滲透在初中數(shù)學(xué)學(xué)習(xí)的不同階段。例如,借助數(shù)軸學(xué)生形象的表示了正負(fù)數(shù),理解了絕對值的概念;借助函數(shù)圖形有效地將方程和圖形相結(jié)合,理解了函數(shù)的概念和函數(shù)表示的問題;借助圖形將統(tǒng)計(jì)數(shù)據(jù)形象化的表示以實(shí)現(xiàn)結(jié)果的清晰和對比等。數(shù)形結(jié)合思想分布范圍較廣,分布特征呈現(xiàn)出不規(guī)則性。這就要求教師在教學(xué)過程中,要逐漸展示數(shù)形結(jié)合的方法,引導(dǎo)學(xué)生真正學(xué)會(huì)運(yùn)用數(shù)形結(jié)合思想解決問題,并培養(yǎng)學(xué)生運(yùn)用數(shù)形結(jié)合思想的敏感型。例如,在《一次函數(shù)》的學(xué)習(xí)過程中,教師首先引導(dǎo)學(xué)生對所出示的生活問題進(jìn)行分析和解答,理解一次函數(shù)是因變量Y隨著自變量X的變化而不斷變化的,也就是這樣的問題是一個(gè)動(dòng)態(tài)化的變化過程,沒有相對固定的答案,怎樣能夠有效的表示結(jié)果呢,顯然用列舉的方法是太方便的,這是教師引入數(shù)形結(jié)合思想,引導(dǎo)學(xué)生通過對未知數(shù)賦值,來通過圖像展示Y隨X變化的動(dòng)態(tài)過程,學(xué)生逐漸畫出圖像,并借助圖像把握Y=aX+c的函數(shù)的變化規(guī)律,理解一次函數(shù)的內(nèi)涵。再次基礎(chǔ)上,教師引導(dǎo)學(xué)生利用此方面解答二元一次方程組,教師引導(dǎo)學(xué)生對未知數(shù)x、y進(jìn)行賦值,然后分別畫出兩個(gè)方程的圖像,兩個(gè)方程出現(xiàn)一個(gè)交點(diǎn),這個(gè)交點(diǎn)就是方程組的解,學(xué)生在實(shí)踐的過程中將數(shù)形結(jié)合思想和已有的知識相聯(lián)系,逐漸理解數(shù)形結(jié)合的運(yùn)用過程和運(yùn)用情景。數(shù)形結(jié)合思想不是一個(gè)版塊學(xué)習(xí),不能夠通過主題式的教學(xué)促進(jìn)學(xué)生的把握,只能夠在數(shù)學(xué)教學(xué)的過程中循序漸進(jìn)地進(jìn)行滲透,促進(jìn)學(xué)生對數(shù)形結(jié)合思想的逐步感知。

(二)、為學(xué)生提供運(yùn)用數(shù)形結(jié)合思想解決問題的數(shù)學(xué)實(shí)踐,提高學(xué)生的運(yùn)用能力

數(shù)學(xué)思想和數(shù)學(xué)方法的掌握只是形成了學(xué)生和新知識之間的練習(xí),也就是說學(xué)生理解了數(shù)形結(jié)合思想的運(yùn)行機(jī)制,但是要真正的實(shí)現(xiàn)學(xué)生對于新知識的同化和順應(yīng),離不開學(xué)生關(guān)于新知識新思想的運(yùn)用。在數(shù)學(xué)解題中要培養(yǎng)學(xué)生利用圖形理解數(shù)學(xué)信息和利用圖形表示數(shù)量關(guān)系的習(xí)慣,如在應(yīng)用題解答的過程中,題意的分析和數(shù)量關(guān)系的把握是解題的關(guān)鍵,初中生在解題過程中習(xí)慣在腦中建立表象,但是學(xué)生的抽象思維能力發(fā)展尚不成熟,因此這樣的分析習(xí)慣就造成學(xué)生解答的困難,這就需要教師引導(dǎo)學(xué)生養(yǎng)成利用圖像展示數(shù)量關(guān)系的習(xí)慣,如速度和距離的關(guān)系、計(jì)件和效率的關(guān)系以及生產(chǎn)效率和產(chǎn)量的關(guān)系等用圖像表示就會(huì)直觀很多,也更容易引導(dǎo)學(xué)生理解題目中的已知條件和未知條件,弄清里面的數(shù)量關(guān)系。同時(shí),要為學(xué)生提供實(shí)踐的機(jī)會(huì),數(shù)形結(jié)合思想的把握和運(yùn)用更多地依靠在數(shù)學(xué)問題解決過程中的逐漸運(yùn)用,這就要求教師要為學(xué)生提供充足的案例。數(shù)形結(jié)合思想分配的分散特點(diǎn),需要教師將不同的知識訓(xùn)練結(jié)合在一起,創(chuàng)立數(shù)形思想訓(xùn)練的題庫,題庫的類型要呈現(xiàn)多樣性,可以是數(shù)學(xué)試題的解答、可以使代數(shù)關(guān)系的圖形轉(zhuǎn)化,也可以是生活中真實(shí)的問題,可以是卷紙式的計(jì)算解答,也可以是學(xué)生商量的實(shí)踐問題解決,通過多樣化的形式促進(jìn)數(shù)形結(jié)合思想的靈活把握和運(yùn)用。

綜上所述,數(shù)形結(jié)合思想是一種重要的數(shù)學(xué)思想,它反應(yīng)了一種數(shù)學(xué)思維模式,對解決數(shù)學(xué)問題具有重要的作用。數(shù)形結(jié)合思想也與初中生的思維發(fā)展特征相吻合,是促進(jìn)初中數(shù)學(xué)有效開展的重要方式。在教學(xué)中,一方面要注重?cái)?shù)形結(jié)合思想的逐漸滲透,提高學(xué)生的應(yīng)用意識,另一方面要為學(xué)生提供數(shù)形結(jié)合思想運(yùn)用的實(shí)踐,促進(jìn)學(xué)生運(yùn)用能力的提高。

參考文獻(xiàn):

[1]張旭華. 初中數(shù)學(xué)教學(xué)中滲透數(shù)形結(jié)合思想的研究[J]. 考試周刊,2014,35:65.

篇4

【關(guān)鍵詞】初中數(shù)學(xué) 變式教學(xué) 運(yùn)用

一、前言

初中數(shù)學(xué)中的變式教學(xué)是把數(shù)學(xué)中的條件、結(jié)論、形式、內(nèi)容等問題進(jìn)行合理的轉(zhuǎn)換,變成另一種表達(dá)形式,但不改變本來的意思。在平時(shí)的初中數(shù)學(xué)訓(xùn)練中,變式教學(xué)主要是對數(shù)學(xué)題型的多方式解答,讓學(xué)生從另一角度輕松容易的理解數(shù)學(xué)題目,激發(fā)學(xué)生的思考熱情,改變學(xué)生枯燥呆板的學(xué)習(xí)方式,變式教學(xué)讓學(xué)生學(xué)習(xí)起來會(huì)更加容易,學(xué)生在快樂和輕松中掌握數(shù)學(xué)知識,提高學(xué)生數(shù)學(xué)成績,同時(shí)也提高教師的教學(xué)質(zhì)量,是一舉兩得的好事。

二、變式教學(xué)引入初中數(shù)學(xué)中

對于初中的數(shù)學(xué)教學(xué),把變式教學(xué)方法引入課堂中,通過改變多種方式,但是不改變本來的意思,通過對比的方式,重新建構(gòu)同學(xué)們腦海中的數(shù)學(xué)問題。在初中數(shù)學(xué)中,最典型的就是代數(shù)概念引入。概念引入的變式教學(xué)中一種方式是前面講到的比較分析法,另一種是辨析式的方法,后者是指老師把數(shù)學(xué)概念給大家講解之后,根據(jù)概念的內(nèi)涵及外延設(shè)計(jì)相應(yīng)的問題,通過學(xué)生對問題的解答深化對概念的認(rèn)識和理解。例如,初中生在學(xué)習(xí)負(fù)數(shù)之前,事先跟學(xué)生們提一個(gè)問題就是天氣溫度,對高溫度和最低溫度,如何去表述溫度的不同,通過負(fù)數(shù)的學(xué)習(xí)就能理解了。這樣便能激發(fā)學(xué)生的求知欲和好奇心,讓學(xué)生喜歡上數(shù)學(xué)課。同時(shí)也營造了良好的學(xué)習(xí)課堂氛圍,不再讓課堂枯燥乏味。在對概念說明之后列舉具體的數(shù)學(xué)題讓同學(xué)們解答,通過師生之間的討論從認(rèn)識概念到熟悉概念最后到掌握概念的目的。一般而言, 初中的幾何概念呈現(xiàn)這樣的特點(diǎn):一是實(shí)踐性, 很多幾何概念是從人們的日常生活實(shí)踐中概括發(fā)展而來, 但是,因?yàn)槿藗內(nèi)粘I畹母拍畋容^寬泛、不穩(wěn)定容易變化,而且會(huì)有多重意義,學(xué)生很容易混淆和理解錯(cuò)誤,因此老師在對學(xué)生進(jìn)行教學(xué)之前,引導(dǎo)學(xué)生回到現(xiàn)實(shí)生活中,回想現(xiàn)實(shí)經(jīng)歷,學(xué)生的實(shí)踐經(jīng)驗(yàn)讓學(xué)生更好的理解數(shù)學(xué)概念。實(shí)踐也表明,經(jīng)驗(yàn)對人們理解知識很重要,因此,要加強(qiáng)學(xué)生的實(shí)踐活動(dòng)引導(dǎo)。另外,老師還可以畫出概念的相關(guān)圖形,通過圖形的變化讓學(xué)生理解概念。第二個(gè)特點(diǎn)是直觀性。 初中幾何的概念和圖形不可分割,圖形是幾何的特色。幾何通過圖形表示更加直觀容易理解。但是教材中給出的幾何圖形往往都是單純的一種,學(xué)生難以理解和掌握,因此,老師要對圖形進(jìn)行多種轉(zhuǎn)化,也就是進(jìn)行變式,讓學(xué)生從多種圖形中發(fā)現(xiàn)學(xué)習(xí)幾何的竅門和規(guī)律,掌握幾何的邏輯思維。對于幾何教學(xué), 老師不但要對數(shù)學(xué)概念內(nèi)涵、外延進(jìn)行定義和理解,同時(shí)要認(rèn)識到概念背后都有一個(gè)命題,任何一個(gè)概念原命題正確逆命題也正確,因?yàn)槊}的條件和命題的結(jié)論互為充分必要條件。也就是說任何一個(gè)概念即可以當(dāng)做性質(zhì)用,也可以當(dāng)作判定方法用。第三個(gè)是初中數(shù)學(xué)的系統(tǒng)性。學(xué)生對數(shù)學(xué)概念的學(xué)習(xí)是個(gè)長期的過程,需要老師的循序善誘的引導(dǎo),學(xué)生對概念的理解都是零散的,分開的,而沒有形成一個(gè)完整的體系,因此,老師要幫助學(xué)生把相關(guān)概念串聯(lián)起來,形成一個(gè)概念體系和思路,讓學(xué)生以聯(lián)系和整體的思維去認(rèn)識所有的數(shù)學(xué)概念,這樣學(xué)生學(xué)到的東西就不只是停留在表面的膚淺層次,從而對概念從本質(zhì)和規(guī)律上把握。實(shí)現(xiàn)更深更高層面的進(jìn)步,這就是初中數(shù)學(xué)教學(xué)的主要目的。

三、變式教學(xué)中,代數(shù)和幾何的比較

代數(shù)和幾何的相似之處就在于代數(shù)和幾何的概念都是來源于現(xiàn)實(shí)社會(huì)生活,因此學(xué)生理解數(shù)學(xué)概念就應(yīng)該回歸到現(xiàn)實(shí),從自己身邊的生活開始,發(fā)現(xiàn)身邊事物中的數(shù)學(xué)現(xiàn)象。因此教師要對學(xué)生的教學(xué)中要適當(dāng)?shù)牟捎矛F(xiàn)實(shí)的例子讓學(xué)生理解,而不是生硬的講解概念,如果不會(huì)到現(xiàn)實(shí),學(xué)生的思維和自己的經(jīng)歷脫節(jié),就算老師講一萬次學(xué)生也無法理解,所以回歸社會(huì)日常生活對于學(xué)生學(xué)習(xí)數(shù)學(xué)非常重要。例如數(shù)學(xué)中的垂直內(nèi)容就來源于生活。代數(shù)和幾何的很多概念具有邏輯性,所有的概念都命題,命題的條件和命題的結(jié)論互為充分必要條件,例如前面提到的平行四邊形的概念,性質(zhì)和判定標(biāo)準(zhǔn)互用。為此,老師在數(shù)學(xué)教學(xué)中,特別注意采用合理的方式,給出相關(guān)概念的逆向命題,這就是一種變式轉(zhuǎn)化。目的是讓學(xué)生理解概念內(nèi)容和屬性。

四、結(jié)語

代數(shù)和幾何的所有概念都有系統(tǒng)性特征。學(xué)生對初中數(shù)學(xué)掌握比較慢,加之課本上的題材比較單一,這就需要老師引導(dǎo)學(xué)生聯(lián)系實(shí)際生活,從生活中發(fā)現(xiàn)數(shù)學(xué)問題,采用靈活的方式變化數(shù)學(xué)概念,這樣不僅不會(huì)改變概念的本質(zhì)和屬性,而且讓學(xué)生理解起來更加輕松,調(diào)動(dòng)了學(xué)生的學(xué)習(xí)數(shù)學(xué)積極性,提高了初中數(shù)學(xué)的教學(xué)質(zhì)量。

參考文獻(xiàn):

[1]褚海濤.變式訓(xùn)練在初中數(shù)學(xué)復(fù)習(xí)教學(xué)中的實(shí)踐思考[J].現(xiàn)代閱讀.2011(24).

[2]潘忠.初中數(shù)學(xué)教學(xué)中“變式訓(xùn)練”的幾個(gè)案例[J].科學(xué)大眾.2011(10).

篇5

關(guān)鍵詞:浙教版 初中數(shù)學(xué) 多角度 創(chuàng)新思維

中圖分類號: G633.3 文獻(xiàn)標(biāo)識碼: C 文章編號:1672-1578(2012)01-0103-02

1 浙教版初中數(shù)學(xué)教材的基本內(nèi)容

作為在全國范圍內(nèi)的基本數(shù)學(xué)教材版本之一,浙教版初中數(shù)學(xué)教材主要被浙江省為中心的幾個(gè)省市使用。與其他版本的初中數(shù)學(xué)教材相比,浙教版初中數(shù)學(xué)教材在內(nèi)容的設(shè)置上吻合了教育部對于初中數(shù)學(xué)教學(xué)內(nèi)容的要求。但是,在內(nèi)容結(jié)構(gòu)的設(shè)計(jì)上,浙江版與其他版本的初中數(shù)學(xué)教材有所不同。在這個(gè)內(nèi)容知識點(diǎn)機(jī)構(gòu)最大的特點(diǎn)就是將代數(shù)和幾何的知識相互交叉,例如在七年級上學(xué)期的教材中,主要設(shè)置了數(shù)學(xué)中數(shù)的基本知識及運(yùn)算、方程的基本運(yùn)算以及幾何的點(diǎn)、線、面基本知識,其余學(xué)期的知識點(diǎn)情況也大體相同。但是在其他版本的教材中,大多數(shù)以代數(shù)、幾何相互獨(dú)立的學(xué)期知識講解,這樣的知識點(diǎn)的設(shè)置可能會(huì)使學(xué)生更加專一的學(xué)習(xí),但是并不利于學(xué)生綜合學(xué)習(xí)能力的培養(yǎng)。有研究表明,在初中數(shù)學(xué)學(xué)習(xí)階段,代數(shù)和圖形的相互交叉學(xué)習(xí),更利于學(xué)生學(xué)習(xí)能力的培養(yǎng),有助于學(xué)生未來學(xué)習(xí)的發(fā)展。

平面幾何是初中數(shù)學(xué)教材中非常重要的一部分,在浙教版初中數(shù)學(xué)教材中,關(guān)于平面幾何的章節(jié)大約占了全部知識點(diǎn)的一半。對于初中學(xué)生來說,平面幾何是他們走進(jìn)幾何世界的開始,學(xué)好初中階段的平面幾何,對于未來數(shù)學(xué)學(xué)習(xí)有非常大的幫助。平面幾何與代數(shù)運(yùn)算比較,學(xué)習(xí)需要建立在想象能力的基礎(chǔ)上,因此,培養(yǎng)學(xué)生的多角度創(chuàng)新思維,對于學(xué)習(xí)平面幾何有非常大的幫助。

2 多角度創(chuàng)新思維培養(yǎng)的若干措施分析

初中數(shù)學(xué)是小學(xué)數(shù)學(xué)學(xué)習(xí)的提升,因此,如何從簡單的機(jī)械的學(xué)習(xí)跨越到主動(dòng)的有興趣的學(xué)習(xí)是初中教師在數(shù)學(xué)教學(xué)中應(yīng)該注重的問題。作為學(xué)生學(xué)習(xí)的引導(dǎo)者,教師在教學(xué)過程中所采取的各種措施對于學(xué)生學(xué)習(xí)能力的培養(yǎng)有非常大的作用。對于在浙江版初中數(shù)學(xué)教學(xué)過程中多角度創(chuàng)新思維的培養(yǎng),教師應(yīng)該從以下幾個(gè)方面入手。

2.1 形象教學(xué),讓學(xué)生認(rèn)識到數(shù)學(xué)中的美

平面幾何較其他知識來說更加的具體、更加形象,因此,通過形象的教學(xué)方法,開發(fā)學(xué)生的想象空間,讓學(xué)生能夠認(rèn)識到數(shù)學(xué)中的美,對于學(xué)生的創(chuàng)新思維的培養(yǎng)有非常大的作用。在教學(xué)過程中,要盡量讓學(xué)生能夠通過幾何聯(lián)系到日常的生活,要充分利用各種教學(xué)手段讓學(xué)生能夠認(rèn)識到幾何中的線條、顏色以及各種對稱美。在教學(xué)中盡量把生活中美的圖形聯(lián)系到課堂教學(xué)中,再把圖形運(yùn)用到美術(shù)創(chuàng)作、生活空間的設(shè)計(jì)中使他們產(chǎn)生創(chuàng)造圖形美的欲望,驅(qū)使他們創(chuàng)新,維持長久的創(chuàng)新興趣。例如八年級上學(xué)期教材中的三視圖知識點(diǎn),它是學(xué)生學(xué)習(xí)立體幾何的基礎(chǔ),在這個(gè)過程中,教師可以用各種材料以及顏色搭配來幫助學(xué)生進(jìn)行空間思維建立,激發(fā)學(xué)生的學(xué)習(xí)興趣。當(dāng)然,最重要的是讓學(xué)生能夠自己建立具體的模型,通過對立體幾何的理解,學(xué)生能夠創(chuàng)造出很多與教師不同的模型,一方面激發(fā)了學(xué)生的學(xué)習(xí)興趣,另一方面則培養(yǎng)了其空間思維的能力。

2.2 小組分配,讓學(xué)生進(jìn)行探究性學(xué)習(xí)

探究性學(xué)習(xí)對于學(xué)生創(chuàng)新能力的培養(yǎng)是一種非常有效的學(xué)習(xí)方法。在浙教版初中數(shù)學(xué)的平面幾何知識中,通過小組分配,讓學(xué)生自主的進(jìn)行探究性學(xué)習(xí)能夠使教學(xué)的效果最大化。探究性學(xué)習(xí)的定義這樣的,探究性學(xué)習(xí)指學(xué)生在學(xué)科領(lǐng)域內(nèi)或現(xiàn)實(shí)生活情境中選取某個(gè)問題作為實(shí)破點(diǎn),通過質(zhì)疑、發(fā)現(xiàn)問題;調(diào)查研究、分析研討,解決問題;表達(dá)與交流等探究學(xué)習(xí)活動(dòng),獲得知識,激趣,掌握程序與方法。毫無疑問,平面幾何知識的學(xué)習(xí)運(yùn)用探究性學(xué)習(xí)方法非常合適。在教學(xué)過程中,教師可以將學(xué)生分為若干小組,讓他們通過自己的理解將學(xué)過的知識點(diǎn)進(jìn)行相互串聯(lián),變成有連續(xù)性的知識框架。例如,當(dāng)學(xué)習(xí)到九年級上學(xué)期的平行四邊形知識點(diǎn)時(shí),教師可以讓每一個(gè)小組從點(diǎn)、線、面的知識點(diǎn)開始,到三角形的知識,再到坐標(biāo)系等等一系列的知識點(diǎn)建立一個(gè)統(tǒng)一的學(xué)習(xí)模型,這個(gè)模型沒有固定的約束條件,知識要能符合學(xué)生的學(xué)習(xí)習(xí)慣就可以。通過這種具體的教學(xué)模式,首先激發(fā)了學(xué)生的學(xué)習(xí)興趣,調(diào)動(dòng)了學(xué)生學(xué)習(xí)的積極性,同時(shí)能夠培養(yǎng)他們團(tuán)隊(duì)合作的能力。研究表明,讓學(xué)生進(jìn)行探究性學(xué)習(xí),對于學(xué)生創(chuàng)新思維能力的培養(yǎng)具有非常大的作用。

2.3 轉(zhuǎn)變觀念,讓學(xué)生用數(shù)學(xué)思想去學(xué)習(xí)

雖然初中階段的數(shù)學(xué)學(xué)習(xí)僅僅是學(xué)生數(shù)學(xué)學(xué)習(xí)的一個(gè)初級階段,特別是對于幾何問題的學(xué)習(xí),更加淺顯。但是,培養(yǎng)學(xué)生用數(shù)學(xué)思想學(xué)習(xí)數(shù)學(xué)的習(xí)慣對于學(xué)生數(shù)學(xué)學(xué)習(xí)具有非常重要的作用。數(shù)學(xué)思想,是指現(xiàn)實(shí)世界的空間形式和數(shù)量關(guān)系反映到人們的意識之中,經(jīng)過思維活動(dòng)而產(chǎn)生的結(jié)果,它含有傳統(tǒng)數(shù)學(xué)思想的精華和現(xiàn)代數(shù)學(xué)思想的基本特征,并且是歷史地發(fā)展著的。通過數(shù)學(xué)思想的培養(yǎng),能夠使學(xué)生的數(shù)學(xué)學(xué)習(xí)能力有一個(gè)大幅度的提高。并且,數(shù)學(xué)思想的培養(yǎng)對于學(xué)生認(rèn)知數(shù)學(xué)和應(yīng)用數(shù)學(xué)知識具有非常大的幫助作用。例如,浙教版七年級下學(xué)期教材中關(guān)于圖形變換的知識點(diǎn),如果學(xué)生死記硬背去記住圖形平移和對稱的規(guī)律并不能讓學(xué)生學(xué)到什么,相反,在這些知識點(diǎn)的運(yùn)用時(shí)顯得更加的被動(dòng)。如果,將對稱圖形的性質(zhì)與二次函數(shù)中對稱軸的平移特點(diǎn)以及坐標(biāo)系性質(zhì)相互結(jié)合使用的話,學(xué)生能夠非常容易的記住圖形平移和旋轉(zhuǎn)的規(guī)律。數(shù)學(xué)思想的培養(yǎng)讓學(xué)生能夠真正認(rèn)識到數(shù)學(xué)的快樂,并且對他們以后的數(shù)學(xué)學(xué)習(xí)都有很大的幫助。

3 結(jié)語

文中所給出的一系列措施對于浙教版初中數(shù)學(xué)教學(xué)過程中學(xué)生創(chuàng)新思維能力的培養(yǎng)僅僅是一種參考。在具體的教學(xué)過程中,教師應(yīng)該定位好自己的學(xué)習(xí)引導(dǎo)者的角色,在教學(xué)過程中多與學(xué)生進(jìn)行交流,幫助他們認(rèn)識并且發(fā)現(xiàn)自己在學(xué)習(xí)中的不足,這些都是教師在教學(xué)過程中應(yīng)該注意到的??傊?,發(fā)揮學(xué)生的主觀學(xué)習(xí)能力,激發(fā)他們的學(xué)習(xí)興趣對于學(xué)生的學(xué)習(xí)是非常重要的。

參考文獻(xiàn):

[1]王振國. 談初中數(shù)學(xué)“創(chuàng)新學(xué)習(xí)”的培養(yǎng)[J]. 佳木斯教育學(xué)院學(xué)報(bào),2011,1.

[2]齊瑛. 淺談初中數(shù)學(xué)教學(xué)中學(xué)生行為習(xí)慣的培養(yǎng)[J]. 科學(xué)咨詢,2011,1.

篇6

一、初、高中數(shù)學(xué)教學(xué)中相關(guān)因素的比較:

教學(xué)的三大要素是教材(教學(xué)內(nèi)容)、教師(教學(xué)方法)、學(xué)生,研討“銜接”,必然從教學(xué)內(nèi)容、教法、學(xué)生三方面著手。

1.教學(xué)內(nèi)容因素: (1)初中數(shù)學(xué)內(nèi)容量較小,偏重運(yùn)算,歸納,側(cè)重于常量計(jì)算及簡單圖形的分析,大部分內(nèi)容較為直觀形象,抽象程度不高。學(xué)生進(jìn)入高中以后,所學(xué)內(nèi)容將比初中內(nèi)容遠(yuǎn)為豐富,而且開始注重在運(yùn)動(dòng)變化的過程中進(jìn)行研究,側(cè)重演繹,對邏輯推理能力、抽象思維和創(chuàng)造性思維能力要求提高。隨著學(xué)習(xí)進(jìn)程的發(fā)展,需接受的信息量不斷增大,對運(yùn)用各部份知識和多種技能進(jìn)行綜合分析推理的多維應(yīng)用的要求也日益提高,高一學(xué)生往往難以適應(yīng)。(2)初中階段因?qū)倭x務(wù)教育,教材深、廣度均受到嚴(yán)格的控制,致使一些與高中數(shù)學(xué)教學(xué)密切聯(lián)系的內(nèi)容(如四種命題關(guān)系二次函數(shù)等)不講或少講,形成了高、初中教材內(nèi)容上的脫節(jié),對高中數(shù)學(xué)的學(xué)習(xí)也有一定的影響。(3)高一階段開始學(xué)習(xí)立體幾何,從初中基本上限于在平面內(nèi)研究圖形位置關(guān)系上升到從三維空間進(jìn)行研究,不但內(nèi)容更豐富,而且需要較強(qiáng)的空間想象能力,這是初中階段較為薄弱的環(huán)節(jié),而且初中階段的平面幾何學(xué)習(xí)中形成的思維定勢更容易對立體幾何的學(xué)習(xí)造成負(fù)面的干擾。

2.教學(xué)方法因素:(1)初中數(shù)學(xué)教學(xué)因?yàn)閮?nèi)容相對較少,往往進(jìn)度較慢,對同一內(nèi)容經(jīng)常反復(fù)闡釋,詳盡細(xì)致。(2)初中數(shù)學(xué)習(xí)題相對類型較少,解題技能較為簡單,教師常在課內(nèi)講授許多分類型的所謂典型“套題”,作業(yè)中習(xí)題大都可通過模仿例題解決,變化程度不大。(3)一些高中數(shù)學(xué)教師由于沒有經(jīng)歷過初中數(shù)學(xué)教學(xué),也沒有對現(xiàn)行初中數(shù)學(xué)教材進(jìn)行認(rèn)真研究,對初中數(shù)學(xué)內(nèi)容、要求、教法了解不夠全面。

3.學(xué)習(xí)方法因素:(1)初中學(xué)生在學(xué)習(xí)上較多依賴教師,缺乏主動(dòng)、獨(dú)立的學(xué)習(xí)習(xí)慣,許多初中學(xué)生的學(xué)習(xí)一般只注重完成課外作業(yè),輕視教材閱讀理解,對我校一個(gè)高一班級新生數(shù)學(xué)學(xué)習(xí)狀況調(diào)查表明:(2)部分高一學(xué)生升入高中后,由于高中數(shù)學(xué)教學(xué)上的不適應(yīng),成績開始下降,與初中階段的成績形成很大的反差,自信心受到較大挫折,認(rèn)為高中數(shù)學(xué)太難,不好學(xué),產(chǎn)生了畏難,厭學(xué)的情緒,從而導(dǎo)致數(shù)學(xué)成績進(jìn)一步下滑,形成惡性循環(huán)。

二、改善初、高中數(shù)學(xué)銜接教學(xué)的若干途徑:

1.重視教材研究,注意新舊知識的聯(lián)系,搞好教學(xué)內(nèi)容的銜接:

(1)復(fù)習(xí)鞏固舊知識,為引入新知識作好鋪墊。

高中數(shù)學(xué)許多知識點(diǎn)與初中數(shù)學(xué)內(nèi)容有密切的聯(lián)系,是初中數(shù)學(xué)知識的發(fā)展和深入,要解決好銜接,首先就要求高中教師應(yīng)全面深入地掌握初中教學(xué)內(nèi)容,注意知識點(diǎn)和基本技能間的聯(lián)系。

(2)學(xué)習(xí)新知,聯(lián)系舊知,不斷完善學(xué)生結(jié)構(gòu)。

新知識是在舊知識的基礎(chǔ)上發(fā)展而來,同時(shí)新的知識能幫助學(xué)生加深,擴(kuò)廣對已有知識認(rèn)識。學(xué)習(xí)新知識,不應(yīng)忘記隨時(shí)引導(dǎo)學(xué)生從新概念,新方法的角度對舊知識進(jìn)行再認(rèn)識,這既可加強(qiáng)初、高中知識的縱橫聯(lián)系,又可加深對高中新知識內(nèi)容的理解與掌握,從而不斷提高學(xué)生分析、解決問題的能力。

(3)注意知識類比,防止知識的負(fù)遷移,克服思維定勢的負(fù)面作用。

(4) 找準(zhǔn)初、高中知識的銜接點(diǎn),要注意新舊知識的聯(lián)系點(diǎn),更要注意引起概念及方法質(zhì)的飛躍的關(guān)鍵點(diǎn),即重點(diǎn)知識的連結(jié)點(diǎn),能力要求的轉(zhuǎn)折點(diǎn)和數(shù)學(xué)思想、方法的形成點(diǎn),教學(xué)中應(yīng)注意使學(xué)生明白新舊知識的聯(lián)系與區(qū)別,及時(shí)滲透各種數(shù)學(xué)技能和思維方法,幫助學(xué)生建立新的認(rèn)識結(jié)構(gòu)。

2.重視教法研究,結(jié)合學(xué)生實(shí)際情況進(jìn)行教學(xué),逐步提高學(xué)生各方面能力:

(1) 重視把握教學(xué)速度,面向大多數(shù)學(xué)生進(jìn)行教學(xué)。

(2) 重視直觀形象的教學(xué)方法,逐步提高學(xué)生的抽象思維能力。

(3)重視數(shù)學(xué)符號的運(yùn)用,培養(yǎng)學(xué)生理 解和使用數(shù)學(xué)語言的能力。

(4) 做好小結(jié)回味,培養(yǎng)學(xué)生探索能力。

3.重視研究學(xué)生,調(diào)動(dòng)學(xué)生學(xué)習(xí)積極性,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣

(1)注意學(xué)生非智力因素的作用,提高學(xué)生學(xué)習(xí)主動(dòng)性。

(2)注意提高學(xué)生自學(xué)能力,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣:

自學(xué)能力以閱讀能力為基礎(chǔ),高一新生大部分沒有自學(xué)的習(xí)慣,要培養(yǎng)學(xué)生自學(xué)閱讀能力首先應(yīng)打好兩個(gè)基礎(chǔ):①理解“數(shù)學(xué)語言”提高數(shù)學(xué)語言與普通語言的“較譯”能力。②掌握“教材結(jié)構(gòu)”,使學(xué)生了解數(shù)學(xué)課本的結(jié)構(gòu)和本章節(jié)的知識結(jié)構(gòu)。在此基礎(chǔ)上還應(yīng)做到:①編好閱讀提綱,以幫助學(xué)生有目的,有條理地學(xué)習(xí)。開始提綱可以擬得較為詳盡,逐漸簡略,最后過渡到不給出提綱,讓學(xué)生逐步掌握閱讀的方法。②不斷提高閱讀要求,閱讀課本,首先要求學(xué)生讀懂,弄清書本中有關(guān)概念、公式、定理的基本內(nèi)容;但這還是不夠的,還要引導(dǎo)學(xué)生深入下去,要善思考,勤鉆研,把書讀通、讀透、讀活。要引導(dǎo)學(xué)生不僅要看到書上的東西,更重要的還要看到書“后面”的東西,要深入想一想,課本是怎樣提出問題,分析問題和解決問題的,引進(jìn)了什么數(shù)學(xué)工具和方法,從而使學(xué)生到如何讀書和研究問題的方法。

篇7

關(guān)鍵詞:初中生;數(shù)學(xué)學(xué)習(xí)方法;探究

一、初中數(shù)學(xué)學(xué)習(xí)過程中常用的學(xué)習(xí)方法

隨著我國對于素質(zhì)教育的推行,教育界對教育教學(xué)模式提出了更高的要求,要求教師在課堂教學(xué)的時(shí)候注重教學(xué)的質(zhì)量和效益,將學(xué)生當(dāng)作學(xué)習(xí)的主體,在這一過程中,如何提高學(xué)生的學(xué)習(xí)效率成為當(dāng)前被廣泛關(guān)注的問題。目前初中數(shù)學(xué)學(xué)生使用的學(xué)習(xí)方法多數(shù)還停留在傳統(tǒng)方式之上,初中數(shù)學(xué)教師在教學(xué)的時(shí)候也常常過多地重視課本內(nèi)容,忽視學(xué)生對于所學(xué)知識的理解程度,這使得初中學(xué)生在進(jìn)行數(shù)學(xué)學(xué)習(xí)的時(shí)候僅僅將自己的學(xué)習(xí)能力停留在記憶水平上,使得初中階段學(xué)生的數(shù)學(xué)學(xué)習(xí)成績常常出現(xiàn)兩極分化的現(xiàn)象。下文簡要介紹學(xué)生在進(jìn)行數(shù)學(xué)學(xué)習(xí)時(shí)常用的數(shù)學(xué)學(xué)習(xí)方法。

在學(xué)習(xí)初中數(shù)學(xué)的時(shí)候,學(xué)生常常需要掌握四個(gè)要素,按照一定的順序進(jìn)行有序的學(xué)習(xí),一般來說是預(yù)習(xí)、上課、復(fù)習(xí)以及作業(yè)復(fù)習(xí)等幾個(gè)階段,這一數(shù)學(xué)學(xué)習(xí)的方法是最常見的方式,同時(shí)輔助這一學(xué)習(xí)方法的還有預(yù)先制訂學(xué)習(xí)目標(biāo),按照一定的學(xué)習(xí)規(guī)則,在教師的指導(dǎo)下完成數(shù)學(xué)學(xué)習(xí)任務(wù),在指定教學(xué)目標(biāo)的時(shí)候要求學(xué)生進(jìn)行全面的考慮,制訂的目標(biāo)既要具體、實(shí)際,還要有可實(shí)現(xiàn)性,在達(dá)到目標(biāo)的過程中采用正確的學(xué)習(xí)方法,例如,借助數(shù)學(xué)輔導(dǎo)書、深入研究數(shù)學(xué)課本、認(rèn)真聽課、進(jìn)行實(shí)踐驗(yàn)證等等。例如,在學(xué)習(xí)三角形知識的時(shí)候,蘇教版數(shù)學(xué)教材在進(jìn)行課程引入的時(shí)候主要是通過鼓勵(lì)學(xué)生進(jìn)行觀察和動(dòng)手操作,在以往角的基礎(chǔ)上進(jìn)一步深入對三角形各個(gè)角的認(rèn)知,并認(rèn)識到三角形的幾何圖形基礎(chǔ),結(jié)合現(xiàn)實(shí)生活中常見的例子強(qiáng)化對三角形性質(zhì)的認(rèn)知,使初中學(xué)生能夠基于自己的生活經(jīng)驗(yàn),了解三角幾何知識的概念,在操作活動(dòng)的輔助之下,初中學(xué)生能夠在腦海中產(chǎn)生深刻的印象。完成教學(xué)任務(wù)中不同層次的要求,豐富了學(xué)生認(rèn)識幾何圖形的途徑,強(qiáng)化了學(xué)生對三角幾何知識的學(xué)習(xí),尤其豐富了幾何證明題的做題思路,有助于學(xué)生積累豐富的學(xué)習(xí)和操作經(jīng)驗(yàn),數(shù)學(xué)成績在這一過程中也會(huì)有很大的進(jìn)步。

在初中數(shù)學(xué)學(xué)習(xí)的過程中,對學(xué)生運(yùn)算能力有很高的要求,數(shù)學(xué)教師在進(jìn)行課堂講解以及布置日常作業(yè)的過程中,對初中生的運(yùn)算能力、空間思維能力、解題能力以及思維發(fā)散能力要重點(diǎn)培養(yǎng),使學(xué)生在學(xué)習(xí)初中數(shù)學(xué)的時(shí)候掌握基本的數(shù)學(xué)代數(shù)公式、法則、幾何定理以及解題的思路和程序,學(xué)生在學(xué)習(xí)的過程中遇到問題,除了向教師尋求解答之外,還要學(xué)會(huì)自己探索解決問題的方式,每做一道題,初中生應(yīng)當(dāng)有意識地總結(jié)數(shù)學(xué)思想方法,例如,掌握初中數(shù)學(xué)解題過程中常用的數(shù)形結(jié)合、函數(shù)、方程以及轉(zhuǎn)化等方法,在面臨一道題目的時(shí)候?qū)W會(huì)從多角度解題,拓寬自己的數(shù)學(xué)學(xué)習(xí)思維,使學(xué)生在初中階段的數(shù)學(xué)學(xué)習(xí)具有趣味性和靈活性。

二、提高初中生數(shù)學(xué)學(xué)習(xí)方法的應(yīng)用與實(shí)踐策略

首先,初中數(shù)學(xué)教師應(yīng)當(dāng)重視對學(xué)生心理素質(zhì)的鍛煉,使得學(xué)生在面臨數(shù)學(xué)學(xué)習(xí)的時(shí)候具備一定的自信心。初中階段的數(shù)學(xué)學(xué)習(xí)是為日后高中學(xué)習(xí)奠定基礎(chǔ)的,學(xué)生在學(xué)習(xí)過程中應(yīng)當(dāng)以高標(biāo)準(zhǔn)要求自己,面對難解的問題要認(rèn)真思考,認(rèn)真聽教師的講解,課后認(rèn)真地完成作業(yè),教師在這一過程中也要吸引學(xué)生上課的注意力,提高數(shù)學(xué)教學(xué)效率,使學(xué)生能夠弄懂知識,并幫助學(xué)生解答難題。為了有效地鞭策學(xué)生學(xué)習(xí),教師應(yīng)當(dāng)為還沒有較高學(xué)習(xí)能力的初中生制訂學(xué)習(xí)目標(biāo),并在了解學(xué)生學(xué)習(xí)特點(diǎn)的基礎(chǔ)上認(rèn)知初中生學(xué)業(yè)發(fā)展的變化,對學(xué)生的學(xué)習(xí)成績進(jìn)行適當(dāng)?shù)墓膭?lì),幫助學(xué)生樹立信息,提高數(shù)學(xué)課堂聽課效率。

其次,初中生應(yīng)當(dāng)在訓(xùn)練中學(xué)會(huì)摸索學(xué)習(xí)的規(guī)律,掌握舉一反三的精髓,初中生在學(xué)習(xí)數(shù)學(xué)的時(shí)候難免會(huì)遇到練習(xí)題,在講解數(shù)學(xué)習(xí)題的時(shí)候,教師應(yīng)當(dāng)幫助初中生形成扎實(shí)的知識功底,提高學(xué)生對題目的理解能力,在做題的時(shí)候使學(xué)生能夠主動(dòng)將知識融會(huì)貫通,對于不懂的問題,注重課堂聽講,重視預(yù)習(xí)與復(fù)習(xí),使學(xué)生在日常的學(xué)習(xí)與做題的過程中不斷加深對數(shù)學(xué)知識的理解。

同時(shí),初中數(shù)學(xué)教師還應(yīng)當(dāng)了解遺忘曲線規(guī)律,在該規(guī)律的指導(dǎo)下,對于遺忘快、難度大、易混淆的知識點(diǎn)進(jìn)行及時(shí)的復(fù)習(xí)與講解,使學(xué)生在單元的學(xué)習(xí)和復(fù)習(xí)之后,對基礎(chǔ)的數(shù)學(xué)知識點(diǎn)進(jìn)行歸納與總結(jié),并在不斷地強(qiáng)化認(rèn)知的過程中注重學(xué)習(xí)方法的總結(jié),使初中生在數(shù)學(xué)學(xué)習(xí)的基礎(chǔ)階段就養(yǎng)成主動(dòng)學(xué)習(xí)的良好習(xí)慣。

篇8

關(guān)鍵詞:翻轉(zhuǎn)課堂;初中數(shù)學(xué);適應(yīng)性分析

隨著教學(xué)改革的推動(dòng),翻轉(zhuǎn)課堂逐步進(jìn)入初中數(shù)學(xué)教學(xué)課堂,而現(xiàn)階段制約翻轉(zhuǎn)課堂的發(fā)展的主要有如下幾方面,教師因素、信息技術(shù)因素、多維環(huán)境因素等。因此,為了更好地將翻轉(zhuǎn)課堂的教學(xué)模式深入到初中數(shù)學(xué)教學(xué)中,教師應(yīng)當(dāng)充分重視因材施教,根據(jù)學(xué)生自身的特點(diǎn)來設(shè)計(jì)教學(xué)內(nèi)容,經(jīng)過多年的教學(xué)經(jīng)驗(yàn)可知,在初中數(shù)學(xué)教學(xué)中引入翻轉(zhuǎn)課堂的教學(xué)模式,以此來加深學(xué)生對學(xué)習(xí)內(nèi)容的理解,從而激發(fā)學(xué)生的學(xué)習(xí)積極性,進(jìn)而有效地提升初中數(shù)學(xué)教學(xué)質(zhì)量。

一、翻轉(zhuǎn)課堂適合哪類數(shù)學(xué)教學(xué)內(nèi)容

從現(xiàn)階段的初中數(shù)學(xué)教學(xué)實(shí)踐可知,翻轉(zhuǎn)課堂的運(yùn)用有利于提升學(xué)生的高階思維能力,因此,教學(xué)內(nèi)容較為簡單,無需過多的師生間的交流溝通的章節(jié),更加適用于學(xué)生自行觀看興趣較高的視頻內(nèi)容。其中,教師可以鼓勵(lì)學(xué)生積極參與到微視頻的制作過程中,這樣,教師可以讓學(xué)生專注在課堂上,進(jìn)行師生間的交流合作,從而更好地提升學(xué)生的數(shù)學(xué)綜合素養(yǎng)。

諸如:學(xué)習(xí)《認(rèn)識幾何圖形》這一章節(jié),這一章節(jié)是初中數(shù)學(xué)幾何部分的入門課,學(xué)生在小學(xué)期間已經(jīng)認(rèn)識了三角形、平行四邊形、長方形等相關(guān)的幾何圖形,并且能夠計(jì)算比較簡單的平面圖形的面積和周長。因此,在進(jìn)行這一章節(jié)的學(xué)習(xí)中,學(xué)生已經(jīng)具有一定的基礎(chǔ),而其內(nèi)容與學(xué)生的實(shí)際生活是相關(guān)的,教師可以引導(dǎo)學(xué)生在生活中感知更多的幾何圖形,從而激發(fā)學(xué)生的學(xué)習(xí)積極性,讓學(xué)生在生活中充分感知幾何圖形的存在。因此,這一章節(jié)十分適合運(yùn)用微視頻直觀呈現(xiàn)的形式,因此,比較適用于翻轉(zhuǎn)課堂這樣的教學(xué)模式。

諸如涉及如何添加輔助線、繪畫函數(shù)圖像和探索圖像性質(zhì)等內(nèi)容,這一類型的教學(xué)則不適合翻轉(zhuǎn)教學(xué)這一教學(xué)模式。

因此,教師在進(jìn)行翻轉(zhuǎn)課堂教學(xué)設(shè)計(jì)過程中,教師應(yīng)當(dāng)對教學(xué)內(nèi)容進(jìn)行選擇,在備課階段應(yīng)當(dāng)認(rèn)真地思考教學(xué)內(nèi)容是否適合翻轉(zhuǎn)課堂這一教學(xué)模式,應(yīng)當(dāng)充分考慮教學(xué)效果。

二、翻轉(zhuǎn)課堂適合哪類學(xué)生

為了更好地將翻轉(zhuǎn)課堂的教學(xué)模式深入到初中數(shù)學(xué)教學(xué)中,教師應(yīng)當(dāng)充分重視因材施教,根據(jù)學(xué)生自身的特點(diǎn)來設(shè)計(jì)教學(xué)內(nèi)容。翻轉(zhuǎn)課堂教學(xué)理論中的主要觀點(diǎn)在于,學(xué)生在充足的時(shí)間和條件下,通過充分的學(xué)習(xí)來取得良好的學(xué)習(xí)成績。其中掌握學(xué)習(xí)理論為翻轉(zhuǎn)課堂提供了極為合理的理論支撐,但是,翻轉(zhuǎn)課堂這種教學(xué)模式則要求學(xué)生能夠有一定的自覺性和自主學(xué)習(xí)能力。

而對于自覺性較差或者是自主學(xué)習(xí)能力較差的學(xué)生而言,如果教師要求學(xué)生課前獨(dú)立地觀看微課視頻,這對于學(xué)生而言存在一定的困難。因此,教師務(wù)必針對這一問題提出一定的補(bǔ)救措施。例如:當(dāng)教師所教授的內(nèi)容較為重要的時(shí)候,而學(xué)生的自覺性較差時(shí),教師應(yīng)當(dāng)在觀看視頻前對學(xué)生提出相對嚴(yán)格的要求,其中要求應(yīng)當(dāng)極為具體,之后,教師再來檢測學(xué)生能否按要求來完成。而如果大部分學(xué)生的自覺性較差時(shí),學(xué)??梢詾閷W(xué)生提供計(jì)算機(jī)教室,教師可以讓學(xué)生集中觀看視頻。除此之外,教師可以要求學(xué)生在課前提前觀看微課視頻,其中涉及相關(guān)的教學(xué)重點(diǎn),而對于數(shù)學(xué)基礎(chǔ)較差的學(xué)生,教師還可以采取反翻轉(zhuǎn)課堂教學(xué),所謂的反翻轉(zhuǎn)課堂教學(xué)是指要求基礎(chǔ)較差的學(xué)生應(yīng)當(dāng)結(jié)合課堂學(xué)習(xí),課后再次觀看微課視頻。

三、哪些教學(xué)環(huán)節(jié)適合翻轉(zhuǎn)教學(xué)

眾所周知,翻轉(zhuǎn)課堂教學(xué)大多運(yùn)用在上課前,教師應(yīng)當(dāng)提前制作好教學(xué)視頻以及導(dǎo)學(xué)等相關(guān)的學(xué)習(xí)資源上傳到網(wǎng)絡(luò)服務(wù)器上,學(xué)生自行下載教師上傳的教學(xué)視頻進(jìn)行提前的學(xué)習(xí)。在學(xué)習(xí)完視頻之后,學(xué)生可以自行完成相關(guān)的測試題,而學(xué)生無法自己解決的問題可以留在課堂上解決。而在課堂上,教師可以根據(jù)學(xué)生自身的學(xué)習(xí)情況來調(diào)整教學(xué)進(jìn)度,并且制訂相關(guān)的合適的教學(xué)計(jì)劃,這樣便能夠形成學(xué)生自主學(xué)習(xí),并且同教師進(jìn)行交流溝通的學(xué)習(xí)環(huán)境。將翻轉(zhuǎn)課堂教學(xué)模式運(yùn)用在初中數(shù)學(xué)教學(xué)實(shí)踐中,教師必須首先關(guān)注初中數(shù)學(xué)自身的特征,關(guān)注學(xué)生的學(xué)習(xí)情況。

為了更好地將翻轉(zhuǎn)課堂的教學(xué)模式深入到初中數(shù)學(xué)教學(xué)中,教師應(yīng)當(dāng)充分重視因材施教,根據(jù)學(xué)生自身的特點(diǎn)來設(shè)計(jì)教學(xué)內(nèi)容,而除了學(xué)生自身的情況特點(diǎn),教師還應(yīng)當(dāng)關(guān)注翻轉(zhuǎn)教學(xué)方式在教學(xué)中的應(yīng)用環(huán)節(jié),在傳統(tǒng)的初中數(shù)學(xué)課堂中,新課導(dǎo)入、新知識的學(xué)習(xí)等相關(guān)環(huán)節(jié)更加適合翻轉(zhuǎn)教學(xué),翻轉(zhuǎn)到課前進(jìn)行學(xué)習(xí),而其中的鞏固練習(xí)、合作交流等環(huán)節(jié)更加適合師生面對面地討論。

例如:在學(xué)習(xí)《認(rèn)識幾何圖形》中,教師可以先讓學(xué)生觀看微課視頻,以此來激發(fā)學(xué)生的學(xué)習(xí)興趣,并且引出本堂課的教學(xué)內(nèi)容,在課上,教師還應(yīng)當(dāng)讓學(xué)生充分的結(jié)合課前學(xué)習(xí)來提出自己感興趣的問題,讓學(xué)生思考更多的問題。而為了更好地檢驗(yàn)學(xué)生對教學(xué)內(nèi)容的掌握程度,教師可以在課堂上對學(xué)生進(jìn)行簡單的測試,讓學(xué)生在學(xué)習(xí)檢驗(yàn)、練習(xí)提高、總結(jié)提問等相關(guān)的環(huán)節(jié)中充分掌握學(xué)習(xí)難點(diǎn),提升初中數(shù)學(xué)教學(xué)質(zhì)量。

總之,隨著現(xiàn)代科技的不斷提升,現(xiàn)代信息技術(shù)支撐下的翻轉(zhuǎn)課堂教學(xué)模式是一個(gè)較為全新的課題,對于此類新生事物,教師應(yīng)當(dāng)充分考慮其特征、學(xué)生的特點(diǎn)以及課堂教學(xué)的特點(diǎn),將信息技術(shù)同初中數(shù)學(xué)學(xué)科進(jìn)行充分的整合,使初中數(shù)學(xué)教學(xué)能夠符合時(shí)代的發(fā)展需求,在一定程度上克服傳統(tǒng)初中數(shù)學(xué)教學(xué)的部分弊端,極大程度上提升初中數(shù)學(xué)學(xué)習(xí)效率,鼓勵(lì)學(xué)生不斷地自學(xué)和思考。

而對于教師而言,在實(shí)際教學(xué)中運(yùn)用翻轉(zhuǎn)課堂教學(xué)模式,教師應(yīng)當(dāng)以學(xué)生為中心,恰當(dāng)?shù)剡\(yùn)用翻轉(zhuǎn)課堂教學(xué)模式進(jìn)行教學(xué),進(jìn)一步激發(fā)學(xué)生的學(xué)習(xí)興趣,更多地體會(huì)數(shù)學(xué)學(xué)習(xí)的思想和方法,充分將信息技術(shù)同學(xué)科學(xué)習(xí)相結(jié)合,更好地提升初中數(shù)學(xué)教學(xué)

質(zhì)量。

參考文獻(xiàn):

篇9

關(guān)鍵詞:初中數(shù)學(xué) 邏輯思維 方法

中圖分類號: G633.6 文獻(xiàn)標(biāo)識碼: C 文章編號:1672-1578(2014)11-0112-01

初中數(shù)學(xué)教學(xué)大綱明確的指出:“初中數(shù)學(xué)教學(xué)中應(yīng)發(fā)展學(xué)生的邏輯思維能力?!睌?shù)學(xué)具有嚴(yán)謹(jǐn)?shù)倪壿嬻w系,數(shù)學(xué)概念的分類,定理的證明,公式法則的推導(dǎo),廣泛使用邏輯推理,因此,數(shù)學(xué)教學(xué)是培養(yǎng)學(xué)生邏輯思維能力極為有力的場地。

1 提升初中學(xué)生邏輯思維能力的必要性以及緊迫性

1.1必要性

調(diào)查發(fā)現(xiàn)初中學(xué)生如果能夠培養(yǎng)比較良好的邏輯思維能力,會(huì)對提升他們自身的學(xué)習(xí)能力、綜合專業(yè)素質(zhì)以及全面發(fā)展有著非常重要的幫助作用,對于初中學(xué)生來說,初中數(shù)學(xué)的教學(xué)在很大程度上能夠符合邏輯學(xué)的學(xué)習(xí)方法,因此學(xué)生在學(xué)習(xí)初中數(shù)學(xué)的過程中,假如數(shù)學(xué)老師能夠正確引導(dǎo)學(xué)生進(jìn)行學(xué)習(xí),那么學(xué)生的邏輯思維能力就能得到很大的提高。

初中學(xué)生在學(xué)習(xí)的過程中培養(yǎng)或者提升自身的邏輯思維能力,與此同時(shí)又將邏輯思維能力實(shí)際的運(yùn)用到數(shù)學(xué)課程學(xué)習(xí)中。邏輯思維能力不僅僅對于學(xué)生現(xiàn)在的學(xué)習(xí)以及生活有一定的幫助,也對以后的各種學(xué)科的學(xué)習(xí)有著積極推動(dòng)的作用。因此,初中數(shù)學(xué)老師需要在進(jìn)行數(shù)學(xué)知識的教育教學(xué)工作中,時(shí)刻將培養(yǎng)學(xué)生的邏輯思維能力作為主要的教學(xué)目標(biāo)。[1]

1.2緊迫性

在平時(shí)的教學(xué)工作中,經(jīng)常會(huì)注意到許多初中生很容易忽視數(shù)學(xué)邏輯思維的培養(yǎng),在遇到綜合性題型的時(shí)候往往沒有充分調(diào)動(dòng)自己的邏輯思維能力,期望一下子解決題目,那是不可能的想法,也是不科學(xué)的想法。面對這樣一種情形,學(xué)生的學(xué)習(xí)興趣就會(huì)降低,從而會(huì)產(chǎn)生厭學(xué)的情緒,對學(xué)生的學(xué)習(xí)成績也會(huì)有較大的影響。一些老師在數(shù)學(xué)教學(xué)過程中只是照本宣科,將自己的思維方式傳給學(xué)生,未能讓學(xué)生形成獨(dú)立解題的思維能力,遇到新的問題就不能有效地加以解決,另外一方面,在數(shù)學(xué)教學(xué)過程中培養(yǎng)學(xué)生的邏輯思維能力對于學(xué)生學(xué)習(xí)有利,在日常生活中也會(huì)產(chǎn)生很大好處。[2]

2 培養(yǎng)初中生數(shù)學(xué)邏輯思維能力的方法

2.1對知識進(jìn)行歸納總結(jié)

幾何定理就可以讓學(xué)生自己推出,這樣可以加深學(xué)生的印象,這也是培養(yǎng)學(xué)生邏輯思維能力最簡單的辦法。在課外的時(shí)間多做一些幾何題目可以增加思維的活躍性,同時(shí)可以積累更多的做題經(jīng)驗(yàn),這樣才能在解題的時(shí)候發(fā)揮自如。

幾何學(xué)科同其他學(xué)科相比,更具系統(tǒng)性,對學(xué)生的要求很高,讓學(xué)生要善于總結(jié)、歸納、概括。比如證明兩條直線平行,除了利用定義證明外,還有哪些可以使用的方法?兩條直線平行后,又具備怎么樣的性質(zhì)?還可以觀察在現(xiàn)實(shí)生活中存在的平行現(xiàn)象,都可以進(jìn)行歸納與總結(jié)。此外,還可以通過一些輔助的記憶方法掌握其基本原理。

2.2建立合作小組

老師不停地講解,學(xué)生被動(dòng)的接受,這樣的一種教學(xué)方法結(jié)果就是老師“煞費(fèi)苦心”,學(xué)生就是“云里霧里”,如果要讓學(xué)生自己思考,然后組成合作小組的形式來討論,可以增加求解題目的方法,在學(xué)生進(jìn)行解題之前,可以多討論、多思考問題,一旦發(fā)現(xiàn)差異,就會(huì)有新的方法。一般而言,可以采用“一題多解”或者“一題多變”的解題模式,主要是讓學(xué)生提出多種解題思路,利用學(xué)生的發(fā)散性思維,多角度的考慮問題,再或者就是讓學(xué)生自己出題,自己求解題目。學(xué)生面對困難的時(shí)候無法求解問題,可以進(jìn)行合作小組的方法進(jìn)行,讓學(xué)生在合作小組里面進(jìn)行討論,大家一起共享資源,出謀劃策,從而可以尋找多種解題的辦法。[3]

2.3教師要不斷提高其自身素質(zhì)

在現(xiàn)有的教學(xué)模式以及教學(xué)條件下,初中數(shù)學(xué)老師以現(xiàn)有的教學(xué)水平,很難滿足當(dāng)前的教學(xué)需要,此刻,就需要老師從提升自我的素質(zhì)開始。針對現(xiàn)有的條件,老師就要通過多看書多實(shí)踐的方法,不斷地提高自己的數(shù)學(xué)邏輯思維能力,在初中數(shù)學(xué)的教學(xué)過程中,用更加活躍的上課方法與學(xué)生進(jìn)行溝通,引導(dǎo)學(xué)生在日常生活中去運(yùn)用數(shù)學(xué)的邏輯思維看待事物,此外,老師還要不斷提高自身的溝通能力,增強(qiáng)與學(xué)校老師以及學(xué)生家長的溝通,做好及時(shí)向?qū)W生家長和學(xué)校領(lǐng)導(dǎo)反饋的事宜,此外,老師還可以了解學(xué)生的思想,關(guān)心學(xué)生,讓學(xué)生喜歡你,從而可以對這門課產(chǎn)生很強(qiáng)的興趣,這樣才能發(fā)揮學(xué)生的積極性。[4]

2.4嚴(yán)格進(jìn)行推理與證明的訓(xùn)練

加強(qiáng)推理證明的嚴(yán)格訓(xùn)練,是培養(yǎng)學(xué)生邏輯思維的有效途徑。在初中數(shù)學(xué)教學(xué)中,老師應(yīng)該有目的、有計(jì)劃地精心組織推理證明例題,并通過有指導(dǎo)的嚴(yán)格訓(xùn)練,使學(xué)生養(yǎng)成不僅證明題求解要有步驟,還有計(jì)算題、作圖題求解有依據(jù),避免出現(xiàn)各種各樣的邏輯錯(cuò)誤。

例如:有的學(xué)生在使用反證法證明a>b時(shí),僅僅反駁了a

3 結(jié)語

總而言之,培養(yǎng)初中生數(shù)學(xué)邏輯思維能力不是一朝一夕就能夠完成,這需要老師花費(fèi)大量的時(shí)間去進(jìn)行教學(xué)和培養(yǎng)的,這是一項(xiàng)長期而復(fù)雜的任務(wù),只有長期的堅(jiān)持不懈的探索和總結(jié),才能慢慢的看到成效,才能真正的提升學(xué)生的邏輯思維能力。

參考文獻(xiàn):

[1]楊彥文,初中數(shù)學(xué)教學(xué)中如何培養(yǎng)或者提升學(xué)生的邏輯思維能力[J].教育科學(xué),2013(4):56-56.

[2]康華明、章宏,初中數(shù)學(xué)學(xué)生邏輯思維的培養(yǎng)研究[J].佳木斯教育學(xué)院學(xué)報(bào),2013(2):248-248.

[3]吳學(xué)軍,初中幾何要注重培養(yǎng)學(xué)生的邏輯思維能力[J].教學(xué)交流,2010(8):115-115.

篇10

關(guān)鍵詞:當(dāng)代信息技能;初中數(shù)學(xué);講授;整合

新時(shí)期的初中數(shù)學(xué)教學(xué),面臨著新的機(jī)遇和挑戰(zhàn)。發(fā)展別致、先進(jìn)的信息技能,為初中數(shù)學(xué)講授新的生長點(diǎn)提供開闊的呈現(xiàn)平臺(tái)。于是,考慮當(dāng)代信息技能和初中數(shù)學(xué)講授的整合,有利于充分認(rèn)識到實(shí)行初中數(shù)學(xué)講授必定要以先輩的教育理論為指導(dǎo),改變教育思維,改造課堂講授,革新教學(xué)方法和技能措施,增進(jìn)教學(xué)看法與講授機(jī)制的總體深入改革。所謂“整合”,其焦點(diǎn)便是把當(dāng)代信息技術(shù)融入初中數(shù)學(xué)部分的講授中去,在實(shí)際講授中利用當(dāng)代信息技能手段獲得筆墨、圖像、聲響、動(dòng)畫、視頻乃至三維虛擬現(xiàn)實(shí)等多位訊息用于微課件,豐富了講授內(nèi)容,使講授方法更加多樣,更加靈活。

一、當(dāng)代信息技能的含義及其與初中數(shù)學(xué)講授切入的研究是整合的根蒂

當(dāng)代信息技能是指操縱電化媒體技能(比如投影、錄音、片子、攝像、幾何畫板、希沃授課助手、photoshop、電子白板、計(jì)算機(jī))等為教育、教學(xué)的一種手段。當(dāng)代多媒體教學(xué)技能配合講授就是從課本的現(xiàn)實(shí)情況出發(fā),因材施教,根據(jù)學(xué)生的認(rèn)知順序、生理心理特點(diǎn)、生活經(jīng)驗(yàn),結(jié)合傳統(tǒng)的教學(xué)方法(教師在黑板上書寫掛圖,課文插圖,測試儀器,模型)和多媒體教學(xué)方法(幻燈、投影視圖的聲音,視頻和計(jì)算機(jī),希沃助教,photoshop、電子白板、幾何畫板有機(jī)的連接),服務(wù)于一般教學(xué)目標(biāo),達(dá)到最佳講授效果是提高教學(xué)質(zhì)量的重要途徑。初中數(shù)學(xué)講授與當(dāng)代教育技能的有機(jī)結(jié)合,最初從初中數(shù)學(xué)講授的本質(zhì)特征及其講授形式上思考。初中數(shù)學(xué)講授注重課堂的重難點(diǎn)方向認(rèn)識,調(diào)控認(rèn)識,情緒認(rèn)識,反應(yīng)改正認(rèn)識,評估認(rèn)識,學(xué)生介入認(rèn)識,凸顯了學(xué)生為主體的講授活動(dòng)。而這種講授,明顯地要求在教學(xué)中采取多容量,快節(jié)奏,循環(huán)反饋,重視教師與學(xué)生的雙邊活動(dòng)。初中數(shù)學(xué)講授中發(fā)揮現(xiàn)代教育多媒體技能,能在課堂講授中發(fā)揮教師的主導(dǎo)作用,達(dá)到講授進(jìn)程的最優(yōu)化,讓學(xué)生獲得最佳的學(xué)習(xí)效果,通過將學(xué)生處于被動(dòng)地位,引領(lǐng)教師教學(xué)活動(dòng)的全過程,打破傳統(tǒng)的教學(xué)習(xí)慣和慣例,并考慮使用當(dāng)代信息技能與初中數(shù)學(xué)講授的結(jié)合,充分發(fā)揮在學(xué)習(xí)過程中學(xué)生的積極性、主動(dòng)性和創(chuàng)造性。教師應(yīng)成為講授的指導(dǎo)者、組織者,學(xué)生建構(gòu)知識的輔助者、激勵(lì)者,而不是知識的灌注者和課堂的主宰。

二、創(chuàng)設(shè)各種各樣的情境,搭建建構(gòu)常識舞臺(tái)是整合的路徑

數(shù)學(xué)自身便是一門與實(shí)際生活關(guān)聯(lián)緊密的學(xué)科,不同的是學(xué)生所要學(xué)的常識是人類很多年來累積的直接經(jīng)驗(yàn),它具有較高的抽象性,要使他們理解性地接受、消化,只有在課堂上老師的講授是不夠的,也應(yīng)該充分利用信息資源的特征,超越時(shí)間和空間的界限,充分利用各種信息資源,使當(dāng)代信息技術(shù)與初中數(shù)學(xué)講授相結(jié)合,創(chuàng)設(shè)各種各樣講授情境,使學(xué)生的學(xué)習(xí)更加多姿多彩,更具當(dāng)代氣息,貼近生活,使教科書“活”起來,從而有效地激勵(lì)教師的教與學(xué)生的學(xué)。

1.創(chuàng)設(shè)切實(shí)情境,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的好奇心與樂趣

學(xué)習(xí)理論建構(gòu)的目的是強(qiáng)調(diào)創(chuàng)設(shè)切實(shí)情境,將情境視為“前提意志建構(gòu)”,并作為數(shù)學(xué)設(shè)計(jì)的本質(zhì)之一。而當(dāng)代多媒體技能正好是創(chuàng)設(shè)切實(shí)情境的有效用具。所以,學(xué)生應(yīng)該更多使用計(jì)算機(jī)操作來完成對數(shù)學(xué)知識的重新發(fā)現(xiàn),體驗(yàn)數(shù)學(xué)美的魅力。如在上二次函數(shù)的圖象、“動(dòng)點(diǎn)問題”、“幾何”課時(shí),發(fā)揮多媒體技能措施能夠變抽象為具體,變動(dòng)為靜,使教學(xué)內(nèi)容獲得強(qiáng)化。在現(xiàn)實(shí)情境下進(jìn)行學(xué)習(xí),激勵(lì)了學(xué)生的遐想思想,激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)的好奇心和樂趣,有效地降低了學(xué)生對數(shù)學(xué)的懼怕。學(xué)生可以在原有的認(rèn)知結(jié)構(gòu)中體驗(yàn)到新的知識和學(xué)習(xí)當(dāng)前的同化指數(shù),以建立新舊知識之間的關(guān)系,并給出一些新的知識。

2.拓寬學(xué)習(xí)資源,經(jīng)過“情境體現(xiàn)”,使數(shù)學(xué)講授成為再創(chuàng)造、再發(fā)現(xiàn)的講解

當(dāng)代信息技能向?qū)W生展示科學(xué)技能發(fā)展的歷史,特別是數(shù)學(xué)發(fā)展的歷史,對數(shù)學(xué)發(fā)現(xiàn)過程的計(jì)算機(jī)模擬的使用,計(jì)算機(jī)數(shù)學(xué)實(shí)驗(yàn)、數(shù)學(xué)定理的計(jì)算機(jī)證明,讓學(xué)生通過數(shù)學(xué)問題的發(fā)現(xiàn)、提出、探索、解決過程中的情景重構(gòu),意識到“問題是數(shù)學(xué)的核心”,重要的問題一直是推動(dòng)數(shù)學(xué)最重要的力量,M而啟發(fā)學(xué)生如何去發(fā)現(xiàn)問題和提出問題;并擅長于獨(dú)自思考,學(xué)會(huì)剖析、發(fā)現(xiàn)問題和創(chuàng)造性地解決問題。例如,筆者在講授坐標(biāo)系新課時(shí)就應(yīng)用課件《奧妙的坐標(biāo)系》向?qū)W生呈現(xiàn)了坐標(biāo)系的出生、美滿及應(yīng)用進(jìn)程,使數(shù)學(xué)講授成了再發(fā)現(xiàn)、再創(chuàng)造的講解。

3.創(chuàng)設(shè)聯(lián)想情境,拓寬思維空間,培養(yǎng)學(xué)生的想象本領(lǐng)和發(fā)散思維

貝弗里奇教授說:“獨(dú)創(chuàng)性往往在于發(fā)現(xiàn)兩個(gè)或兩個(gè)以上研究對象或設(shè)想之間的聯(lián)系或相似之點(diǎn),而原來以為這些對象或設(shè)想彼此沒有關(guān)系?!边@類使兩個(gè)本不相關(guān)的概念彼此接受的實(shí)力,一些心理學(xué)家稱之為“迢遙聯(lián)想”能力,它是創(chuàng)造力的一項(xiàng)首要目標(biāo)。使學(xué)生在兩個(gè)看起來無關(guān)的知識之間進(jìn)行遐想,猶如給學(xué)生一齊馳騁的空間。生活中有比知識更重要的東西。這是人類的遐想,它是知識進(jìn)化的源泉。于是在教學(xué)中可以充分利用統(tǒng)統(tǒng)可共聯(lián)想的空間,運(yùn)用學(xué)生的聯(lián)想力。比方:課本上的圖是“死圖”,沒法施展二次函數(shù)的圖像構(gòu)成進(jìn)程,而在板書時(shí)的圖形鑒于技能緣故,也難畫得精確,更難展現(xiàn)二次函數(shù)線的變換,而利用當(dāng)代信息技能就可以生動(dòng)地把動(dòng)點(diǎn)的問題解決了,這種數(shù)與形之間的內(nèi)在聯(lián)系完美展現(xiàn)出來。在講授過程中,可由學(xué)生經(jīng)過收集訪問教師安插的服務(wù)器上的課件,讓學(xué)生單獨(dú)探尋得出結(jié)論。

4.創(chuàng)設(shè)糾錯(cuò)情境,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)倪壿嬐评砟芰?/p>

學(xué)生在解決問題時(shí),經(jīng)常出現(xiàn)這樣或錯(cuò)誤,我潛移默化地運(yùn)用現(xiàn)代教育技術(shù)引導(dǎo)學(xué)生分析錯(cuò)誤的原因,研究錯(cuò)誤的方式,錯(cuò)誤的糾正,錯(cuò)誤的校對,以補(bǔ)充學(xué)生的常識和邏輯推理的缺陷,以提高解決問題的準(zhǔn)確性,加強(qiáng)思維的嚴(yán)謹(jǐn)性。比如,學(xué)生經(jīng)常性想當(dāng)然地復(fù)制平面幾何、立體幾何,黑板上的板書老師很難畫清楚,我利用幾何畫板設(shè)計(jì)微課件“兩線位置關(guān)系的創(chuàng)造”,讓學(xué)生自己探索糾錯(cuò),收到了很好的效果。

5.創(chuàng)設(shè)辯論性情境,培養(yǎng)學(xué)生積極探究問題

辯論是一種學(xué)生在積極思考的情況下,非循規(guī)蹈矩的思考問題、標(biāo)新立異的追求。在數(shù)學(xué)講授中,教師要善于引導(dǎo)學(xué)生不受成規(guī)的桎梏,經(jīng)過變更命題、變更解法、變換圖形等方法,建議新看法和異議,探尋解題的捷徑,培養(yǎng)學(xué)生積極地探討題目,這種辯論性情境創(chuàng)設(shè)策略主要用于解決問題講授。

6.創(chuàng)設(shè)多樣性情境,培養(yǎng)學(xué)生的創(chuàng)造性

一題多解便是鼓勵(lì)和引導(dǎo)學(xué)生從不同的角度、不同的思維、不同的方法和不同的操作中分析、回答相同的數(shù)學(xué)習(xí)題。這類課的主要目的有三個(gè):一是充分調(diào)動(dòng)學(xué)生思維的主動(dòng)性和積極性,進(jìn)一步全面地運(yùn)用他們的知識來學(xué)習(xí)數(shù)學(xué)問題的解答能力;二是為了磨煉學(xué)生思維的靈活性,激勵(lì)他們長學(xué)問、長聰敏;三是為了開闊學(xué)生的思維,指導(dǎo)學(xué)生變通地駕馭知識的縱橫關(guān)聯(lián),培養(yǎng)學(xué)生的創(chuàng)造性。比如希沃授課助手軟件用手機(jī)隨時(shí)隨地拍攝學(xué)生作品,一鍵向全班分享。

三、有助于學(xué)生熟悉數(shù)學(xué)是整合的基本原則

運(yùn)用當(dāng)代教育技能進(jìn)行形象化和多樣化,數(shù)學(xué)部分與精湛的藝術(shù)形式相聯(lián)系,呈現(xiàn)給學(xué)生,激發(fā)學(xué)生的樂趣和注意力,增強(qiáng)學(xué)生的求知欲,創(chuàng)造條件,逐步促進(jìn)非智力因素的發(fā)展,幫助他們克服困難,激發(fā)學(xué)習(xí)熱情,增強(qiáng)學(xué)生的自信心和勇氣,使這些非智力因素轉(zhuǎn)化為學(xué)生的學(xué)習(xí)動(dòng)機(jī),培養(yǎng)和發(fā)展良好的學(xué)習(xí)態(tài)度,滿足他們的學(xué)習(xí)和身心發(fā)展的需要。當(dāng)代信息技能與初中數(shù)學(xué)講授的整合,可以使學(xué)困生學(xué)習(xí)得越來越深入,也能為學(xué)生更好地理解和應(yīng)用數(shù)學(xué)開放空間。然而,它不可被用來取代根本的數(shù)學(xué)活動(dòng),如操練的基本運(yùn)算、基本的代數(shù)變換、解方程、邏輯推理、數(shù)學(xué)證明等。它應(yīng)平衡當(dāng)代信息技能與傳統(tǒng)的筆紙操作、邏輯推理和畫圖表繪制的平衡。

四、當(dāng)代信息技術(shù)與初中笛Ы彩詰惱合所面臨的問題

當(dāng)代信息技能與初中數(shù)學(xué)講授的整合的基本要求便是要使以計(jì)算機(jī)為中樞的當(dāng)代教育技能真正作為講授的用具,整合到數(shù)學(xué)學(xué)科的課程中來。在現(xiàn)階段,當(dāng)代信息技術(shù)與初中數(shù)學(xué)講授的整合面臨三個(gè)突出問題:

1.教師手中沒有合適的軟件

目前,我國教育軟件的種類還不夠多,初中生基礎(chǔ)參差不齊,有些版本的數(shù)學(xué)教學(xué)軟件對于初中的適用性不強(qiáng),導(dǎo)致課堂講授的實(shí)用性比較差。在這種情況下,教師要進(jìn)行高效的課堂講授,利用計(jì)算機(jī)等手段輔助教學(xué),就要自己開發(fā)軟件。事實(shí)上,由于初中數(shù)學(xué)講授很忙,教師很難投入太多的精力去開發(fā)軟件,作為教師個(gè)人甚至個(gè)別學(xué)校都很難開發(fā)能夠充分發(fā)揮計(jì)算機(jī)作用和體現(xiàn)初中數(shù)學(xué)講授思想的教育軟件。相反,教師長期投入大量的時(shí)間和精力到軟件的開發(fā)中,而不能專注于如何利用計(jì)算機(jī)技術(shù)組織講授,甚至不能集中于講授和研究,會(huì)對講授工作造成損失。

2.教師當(dāng)代信息技能應(yīng)用水平還不夠高

目前,經(jīng)過多方努力,有一些優(yōu)秀的教學(xué)軟件,但在一些學(xué)校很難推廣,原因是一些教師計(jì)算機(jī)操作水平不高,從而很難在自身的講授中使用這些軟件。可以說,提高初中數(shù)學(xué)教師應(yīng)用當(dāng)代教育技能的認(rèn)識和水平已成為最緊迫的問題。

3.學(xué)生的當(dāng)代信息技術(shù)應(yīng)用水平還很不夠高

一部分初中學(xué)生來自農(nóng)村,他們掌握當(dāng)代信息技能有限。根據(jù)數(shù)學(xué)的特點(diǎn),我們結(jié)合教學(xué)內(nèi)容,注重學(xué)生的窗口,重點(diǎn)對學(xué)生進(jìn)行了Window,Word,Powerpoint的基本操作,幾何畫板和希沃授課助手的使用操作方法的培訓(xùn),同時(shí)與信息技術(shù)教師合作,讓信息技術(shù)教師利用信息技術(shù)課對學(xué)生進(jìn)行技術(shù)培訓(xùn)。

有了軟件,有了掌握技能的教師,客觀上也為當(dāng)代信息技能與初中數(shù)學(xué)講授的整合提供了廣闊的活動(dòng)空間。在實(shí)踐中適當(dāng)?shù)厥褂眉寄?,使技能充分發(fā)揮作用,進(jìn)一步?jīng)_破重點(diǎn)難點(diǎn),甚至在技能的支持下改革現(xiàn)有的講授方法、講授內(nèi)容和講授觀念,優(yōu)化初中數(shù)學(xué)課堂講授便是一個(gè)極為重要的課題。

總之,目前當(dāng)代信息技能與初中數(shù)學(xué)講授的整合不過處于實(shí)驗(yàn)性、摸索性的鉆研階段,尚未進(jìn)行全面推廣。不過,隨著當(dāng)代信息技能的成長和初中數(shù)學(xué)講授的實(shí)際需要以及整合實(shí)驗(yàn)的深入進(jìn)行,勢必提高教師利用當(dāng)代信息技能的意識和改變當(dāng)代教育看法,必將大大提高講授效率,將改變傳統(tǒng)的教學(xué)模式,極大地促進(jìn)現(xiàn)代信息技術(shù)與初中數(shù)學(xué)教學(xué)的融合。從這個(gè)意義上說,當(dāng)代信息技能與初中數(shù)學(xué)講授的融洽整合歷程將是一個(gè)持久而艱難的使命。

參考文獻(xiàn):

1.侯毅.教學(xué)新模式.中央民族大學(xué)出版社,2002.

2.王秋海.新課標(biāo)理念下的數(shù)學(xué)課堂教學(xué)技能.華東師范大學(xué)出版社,2004.

3.馬復(fù).設(shè)計(jì)合理的數(shù)學(xué)教學(xué).高等教育出版社,2004.5.

4.趙保和.教育技術(shù)促進(jìn)學(xué)習(xí)過程優(yōu)化的應(yīng)用策略研究.中國電化教育,2004.10.

5.陳華安.新課程理念下重構(gòu)數(shù)學(xué)課程評價(jià)體系的促進(jìn)學(xué)生差異發(fā)展.數(shù)學(xué)教學(xué)通訊,2006.